
Notes On Programming in TEX

Dr. Christian Feuersänger
cfeuersaenger@users.sourceforge.net

Revision 1.17 (2020/02/29)

Abstract

This document contains notes which are intended for those who are interested in TEX programming.
It is valuable for beginners as a first start with a lot of examples, and it is also valuable for experienced
TEXnicians who are interested in details about TEX programming. However, it is neither a complete
reference, nor a complete manual of TEX.

Contents

1 Introduction 2

2 Programming in TEX 2
2.1 Variables in Registers . 2

2.1.1 Allocating Registers . 3
2.1.2 Using More than 256 Registers . 4

2.2 Arithmetics in TEX . 4
2.3 Expansion Control . 5

2.3.1 Macros . 6
2.3.2 Token Registers . 10
2.3.3 Summary of macro definition commands . 11
2.3.4 Debugging Tools – Understanding and Tracing What TEX Does 12

2.4 The Scope of a Variable . 12
2.4.1 Global Variables . 13
2.4.2 Transporting Changes to an Outer Group . 14

2.5 Branching . 15
2.5.1 Boolean Variables . 16
2.5.2 Special Cases for Conditionals . 16

2.6 Loops . 17
2.6.1 Counting loops . 17
2.6.2 Loops over list of items . 19

2.7 More On TEX . 19

3 Survey of Key–Value Handling using pgfKeys 19
3.1 The Low–Level (Direct) Api of pgfKeys . 20
3.2 The Standard Api of pgfKeys . 22

3.2.1 The Current Key Path . 24
3.2.2 Key Filtering . 24

4 Special Tricks 24
4.1 Handling # in Arguments . 24

Index 25

1

1 Introduction

This document is intended to provide a direct start with TEX programming (not necessarily TEX typesetting).
The addressed audience consists of people interested in package or library writing.

At the time of this writing, this document is far from complete. Nevertheless, it might be a good starting
point for interested readers. Consult the literature given below for more details.

2 Programming in TEX

2.1 Variables in Registers

TEX provides several different variables and associated registers which can be manipulated freely.

\count〈num〉
There are 256 Integer registers which provide 32 Bit Integer arithmetics. The registers can be used for
example with \count0=42 or \count7=\macro where \macro expands to a number.

The value of a register can be typeset using \the〈register〉.

The value is now ‘42’.

The value is now ‘-123456’.

\count0=42

The value is now ‘\the\count0’.

\def\macro{-123456}

\count0=\macro

The value is now ‘\the\count0’.

The ‘=’ sign is optional and can be omitted. One thing is common among the registers: an assignment
of the form \count0=〈· · · 〉 expands everything which follows until the expansion doesn’t need more
numbers – even more than one following macro.

The value is now ‘123456789’.

\def\firstmacro{123}

\def\secondmacro{456}

\def\thirdmacro{789}

\count0=\firstmacro\secondmacro\thirdmacro

The value is now ‘\the\count0’.

The precise rules can be found in [2], but it should be kept in mind that care needs to be taken here.
More than once, my code failed to produce the expected result because TEX kept expanding macros
and the registers got unexpected results. Here is the correct method:

1. The value is now ‘42’.

2. The following code will absorb the ‘3’ of ’3.’:

. The value is now ‘12343’.

4. Use \relax after an assignment to end scanning:

5. The value is now ‘1234’.

1. \count0=42 % a white space after the number aborts the reading process. It is discarded.

The value is now ‘\the\count0’.

2. The following code will absorb the ‘3’ of ’3.’:

\def\macro{1234}

\count0=\macro % a white space after a macro will be absorbed by TeX, so this is wrong.

3. The value is now ‘\the\count0’.

4. Use \textbackslash relax after an assignment to end scanning:

\count0=\macro\relax

5. The value is now ‘\the\count0’.

The command \relax tells TEX to “relax”: it stops scanning for tokens, but \relax doesn’t expand to
anything.

2

\dimen〈num〉
There are also 255 registers for fixed point numbers which are used pretty much in the same way as the
\count registers – but \dimen register assignments require a unit like ‘cm’ or ‘pt’.

String access with ‘\the’ works in exactly the same way as for \count registers.

The value is now 1.0pt.

The value is now 0.0001pt.

The value is now 1234.5678pt.

\dimen0=1pt

The value is now \the\dimen0.

\dimen0=0.0001pt

The value is now \the\dimen0.

\def\macro{1234.5678}

\dimen0=\macro pt

The value is now \the\dimen0.

The same rules with expansion of macros after assignments apply here as well.

The \dimen registers perform their arithmetics internally with 32 bit scaled integers, so called ‘scaled
point’ with unit ‘sp’. It holds 1pt=65536sp=216sp. One of the 32 bits is used as sign. The total number
range in pt is [−(230 − 1)/216, (230 − 1)/216] = [−16383.9998,+16383.9998]1.

\toks〈number〉
There are also 255 token registers which can be thought of as special string variables. Of course, every
macro assignment \def\macro{〈content〉} is also some kind of string variable, but token registers are
special: their contents won’t be expanded when used with \the\toks〈number〉. This can be used for
fine grained expansion control, see Section 2.3 below.

The value is now abcDEF.

\toks0={abc}%

\toks1={DEF}%

The value is now \the\toks0 \the\toks1.

Note the white space after \the\toks0: its purpose is to stop the number parsing when TEX scans for
0. The white space is discarded.

Token registers can also contain the special token # which would typically have a special meaning inside
of macros:

\toks0={#1}%

\message{Meaning is \the\toks0}%

This outputs “Meaning is ##1” in your log file.

Token registers are mainly useful when it comes to fine grained expansion control and are discussed in
more depth in Section 2.3.

2.1.1 Allocating Registers

There is a very limited number of registers. Consequently, one has to think carefully how to allocate
them. Typical use–cases for registers are temporary variables (like some intermediate result) and long–living
resources which are to be accumulated while the document or some part of it is to be generated.

It is clearly a bad idea to carelessly overwrite a register.
TEX comes with a single way to “allocate” registers:

\newdimen〈\macroname〉
\newcount〈\macroname〉
\newtoks〈\macroname〉

These macros allocate a new register which is then accessable as 〈\macroname〉.

The value is now 42.0pt.

1Please note that this does not cover the complete range of a 32 bit integer, I do not know why.

3

\newdimen\variable

\variable=42pt

The value is now \the\variable.

The resulting 〈\macroname〉 can now be used in the same way as if you used the register directly. In
fact, it is often simpler because you do not need to worry about the register’s number.

The allocation relies on some global integer variable which is increased for each allocation. This ensures
that variables stored in such allocated variables do not accidentally overwrite the contents of some other
variable.

Note that deallocation is impossible.

While it is perfectly reasonable to allocate long–living variables, one should avoid the allocation of a new
variable just because one needs a “new” temporary variable.

It makes sense to allocate a couple of named variables like \tempa, \tempb, or something like that and
reuse these values for every temporary evaluation. Clearly, care needs to be taken to avoid unintended
overwrites.

It is also possible to use token registers as explained above. However, the usage should be protected by
means of groups:

toks3 inside of group: Value inside of group
toks3 outside of group: Value outside of group

\toks3={Value outside of group}

\begingroup

\toks3={Value inside of group}

toks3 inside of group: \the\toks3

\endgroup

toks3 outside of group: \the\toks3

Groups constitute TEX’s concept of “scope” and are explained somewhere else in this document.

2.1.2 Using More than 256 Registers

TEX on its own is restricted to 256 registers. However, you can manually activate “extended TEX mode” by
using

\usepackage{etex}

early in your preamble. This is actually a very good idea: it allows access to 65536 registers. Today’s
documents which involve lots of packages actually need etex.

Note that even etex does not justify wild and uncontrolled allocated of registers just to store temporary
variables.

If you want almost unlimited temporary variables, you should store the temporaries in macros. This,
of course, involves conversion from numbers to string, but it is the only save way which avoids the limited
number of registers.

2.2 Arithmetics in TEX

\advance〈register〉 by〈quantity〉

The value is now 52.

\count0=42

\advance\count0 by 10

The value is now \the\count0.

The value is now 11.0pt.

\dimen0=1pt

\advance\dimen0 by 10pt

The value is now \the\dimen0.

4

\multiply〈register〉 by〈integer〉

The value is now -420.

\count0=42

\multiply\count0 by -10

The value is now \the\count0.

The value is now 10.0pt.

\dimen0=0.5pt

\multiply\dimen0 by 20

The value is now \the\dimen0.

\divide〈register〉 by〈integer〉
This allows integer division by 〈integer〉 with truncation.

The value is now 2.

\count0=5

\divide\count0 by 2

The value is now \the\count0.

Scaling of \dimen registers:

The value is now 0.5pt.

\dimen0=10pt

\divide\dimen0 by 20

The value is now \the\dimen0.

It is impossible to divide by some non–integer number.

\dimen〈number〉=〈fixed point number without unit〉\dimen〈number〉
This allows fixed point multiplication in \dimen registers.

The value is now 30.0003pt.

\dimen1=50pt

\dimen0=0.6\dimen1

The value is now \the\dimen0.

This is actually all that TEX allows. One needs powerful macro packages like pgf with its
\pgfmathparse{〈expression〉} to do some “real” arithmetics.

Note that the limited number range of these registers also applies to the result of any numerical operation.

2.3 Expansion Control

Expansion is what TEX does all the time. Thus, expansion control is a key concept for understanding how
to program in TEX.

The first thing to know is: TEX deals the input as a long, long sequence of “tokens”. A token is the
smallest unit which is understood by TEX. Each character becomes a token the first time it is seen by TEX.
Every macro becomes a (single!) token the first time it is seen by TEX.

The second thing to know is what characters are before TEX has seen them. Although this knowledge
is rarely needed in every day’s life, it is nevertheless important. The characters which are in the input
document are nothing but characters at first. Even the characters known to have a special meaning like ‘%’,
‘\’ or the braces ‘{}’ are not special – until they have been converted to a token. This happens when TEX
encounters them the first time during its linear processing of the character stream. A token stays a token -
and it will remain the same token forever. If you manage to tell TEX that ‘\’ is a normal character and TEX
sees just one backslash, this backslash will be a normal character token – even if the meaning of all following
backslashes is again special.

Now, we are given a very long list of tokens 〈token1 〉〈token2 〉〈token3 〉〈token4 〉〈token5 〉· · · . TEX processes
these tokens one-by-one in linear sequence. If 〈token1 〉 is a character token like ‘a’, it is typeset. This is not
what I want to write about here now; my main point is how to program in TEX2. So, the interesting thing
in these notes is when 〈token1 〉 is a macro.

2Of course, typesetting is an art in itself and there is a lot to read about it. Just not here in these notes.

5

2.3.1 Macros

We have already seen some applications of macros above. Actually, most users who are willing to read notes
about TEX programming will have seen macros and may have written some on their own – for example using
\newcommand (\newcommand is a “more high–level” version of \def used only in LATEX).

A macro has a name and is treated as an elementary token in TEX (even if the name is very long).
A macro has replacement text. As soon as TEX encounters a macro, it replaces its occurrence with the
replacement text. Furthermore, a macro can consume one or more of the following tokens as arguments.

Executing it: ‘This here is actually the replacement text.’.

\def\macro{This here is actually the replacement text.}

Executing it: ‘\macro’.

Invoking it: replacement with first argument=hello!.

\def\macro#1{replacement with first argument=#1}

Invoking it: \macro{hello!}.

This here is not really a surprise. What might come as a surprise is that the accepted arguments can be
pretty much anything.

Invoking it: replacement with arguments: ‘a’ and ‘sign’.

\def\macro#1-#2.{replacement with arguments: ‘#1’ and ‘#2’.}

Invoking it: \macro a-sign.

The last example \macro runs through the token list which follows the occurrence of \macro. This token list
is “a-sign.”. Macro expansion is greedy, that means the first matching pattern is used. Now, our \macro

expected something, then a minus sign ‘-’, then another (possibly long) argument, then a period ‘.’. The
argument between \macro and the minus sign is available as #1 and the tokens between the minus sign and
the period as #2.

I found arguments ‘42’, ‘43’ and ‘44’.

\def\macro(#1,#2,#3){I found arguments ‘#1’, ‘#2’ and ‘#3’.}

\macro(42,43,44)

As we have seen, macros can be used to manipulate the input tokens by expansion: they take some input
arguments (maybe none) away and insert other tokens into the input token list. These tokens will be the
next to process. We will soon learn more about that.

There is a command which helps to understand what TEX does here:

\meaning〈macro〉
This command expands to the contents of 〈macro〉 as it is seen by TEX.

\def\macro{Replacement \textmacro text \count0=42 \the\count0.}

\message{Debug message: ’\meaning\macro’}

As result, the log file and terminal output will contain

Debug message: ’macro:->Replacement \textmacro text \count 0=42 \the \count 0.’

The last example already shows something about \def: the replacement text can still contain other
macros.

\def〈\macroname〉〈argument pattern〉{〈replacement text〉}
A new macro named 〈macroname〉 will be defined (or re-defined). The {〈replacement text〉} is the macro
body, whenever the macro is executed, it expands to {〈replacement text〉}. The {〈replacement text〉}
is a token list which can contain other macros. On the time of the definition, TEX does not process
(expand) the {〈replacement text〉}.

The {〈replacement text〉} will only be expanded if the macro is executed. This does also apply to any
macros which are inside of {〈replacement text〉}.

Now, I execute it: Macro two contains This is macro one..

Now, I execute the second macro again: Macro two contains Redefined macroone..

6

\def\macroone{This is macro one}

\def\macrotwo{Macro two contains \macroone.}

Now, I execute it: \macrotwo.

\def\macroone{Redefined macroone}

Now, I execute the second macro again: \macrotwo.

Macros can be defined almost everywhere in a TEX document. They can also be invoked almost every-
where.

The 〈argument pattern〉 is a token list which can contain simple strings or macro parameters ‘#〈number〉’
or other macro tokens. The 〈number〉 of the first parameter is always 1, the second must have 2 and
so on up to at most 9. Valid argument patterns are ‘#1#2#3’, ‘(#1,#2,#3)’ or ‘---\relax’. If TEX
executes a macro, it searches for 〈argument pattern〉 in the input token list until the first match is found.
If no match can be found, it aborts with a (more or less helpful) error message.

Got ‘g’

\def\macroone abc{\macrotwo}

\def\macrotwo def{\macrothree}

\def\macrothree#1{Got ‘#1’}

\macroone abcdefg

The last example contains three macro definitions. Then, TEX encounters \macroone. The input token
list is now

‘\macroone abcdefg’.

The space(s) following \macroone are ignored by TEX, they delimit the 〈\macroname〉. Now, TEX
attempts to find matches for 〈argument pattern〉. It expects ‘abc’ – and it finds ‘abc’. These three
tokens are removed from the input token list, and TEX inserts the replacement text of \macroone which
is \macrotwo. At that time, the input token list is

‘\macrotwo defg’.

Now, the same game continues with \macrotwo: TEX searches for the expected {〈argument pattern〉}
which is ‘def’, erases these tokens from the input token list and inserts the replacement text of \macrotwo
instead. This yields

‘\macrothree g’.

Finally, \macrothree expects one parameter token (or a token list enclosed in parenthesis). The next
token is ‘g’, which is consumed from the input token list and the replacement text is inserted – and ‘#1’
is replaced by ‘g’. Then, the token list is

‘Got ‘g’’.

This text is finally typeset (because it doesn’t expand further).

What we have seen now is how TEX macros can be used to modify the token list. It should be noted
explicitly that macro expansion does is in no way limited to those tokens provided inside of {〈replacement
text〉} – if the last argument in {〈replacement text〉} is a macro which requires arguments, these arguments
will be taken from the following tokens. Using nested macros, one can even process a complete part of the
token list, in a manner of loops (but we don’t know yet how to influence macro expansion conditionally, that
comes later).

Let’s try to solve the following task. Suppose you have a macro named \point with 〈argument pattern〉
‘(#1,#2)’, i.e.

\def\point(#1,#2){we do something with #1 and #2}.
Suppose furthermore that you want to invoke \point with the contents which is stored in another macro.
After all, macros are some kind of string variables – it makes sense to accumulate or generate string vari-
ables which will then be used as input for other macros. Let’s assume we have \temp and \temp contains
‘(42,1234)’. A first choice to invoke \point would be to use \point\temp. But: \point searches for an
argument pattern which starts with ‘(’, not with \temp! The invocation fails.

\expandafter〈token〉〈next token〉
The \expandafter command is an – at first sight confusing – method to alter the input token list. But:
it solves our problem with \point\temp!

we do something with 42 and 1234

7

\def\point(#1,#2){we do something with #1 and #2}

\def\temp{(42,1234)}

\expandafter\point\temp

Why did that work!? The command \expandafter scans for the token after \expandafter in the
input token list. This is \point in our case. Then, it scans for the next token which is \temp in our
case (remember: macros are considered to be elementary tokens, just like characters ‘a’ or so). The
two scanned arguments are removed from the input token list. Then, \expandafter expands the 〈next
token〉 one time. In our case, 〈next token〉 is \temp. The first level of expansion of \temp is ‘(42,1234)’.
Then, \expansion inserts the (unexpanded) 〈token〉 followed by the (expanded) contents of 〈next token〉
back into the input token list. In single steps:

1. \expandafter\point\temp

2. Expand \expandafter: next two tokens are ‘\point\temp’.

3. Use \point as 〈token〉 and \temp as 〈next token〉.
4. Expand \temp once, which leads to the tokens ‘(42,1234)’.

5. re-insert 〈token〉 and the expansion of 〈next token〉 back into the input token list. The list is then

‘\point(42,1234)’.

6. Expand \point as next token.

A further example: suppose we want to invoke \theimportantmacro{〈argument〉}. However,
{〈argument〉} is contained in another macro! Furthermore, \theimportantmacro is defined to take
exactly one parameter and our desired argument may have more than one token (which means we need
to surround it with braces). This can be solved by the listing below.

I got the pre-assembled argument ‘xyz’ here.

\def\theimportantmacro#1{I got the pre-assembled argument ‘#1’ here.}

\def\temp{xyz}

\expandafter\theimportantmacro\expandafter{\temp}

Now, what happens here? Let’s apply the rules step by step again:

1. After the initial definitions, the token list is \expandafter\theimportantmacro\expandafter{\temp}.

2. TEX expands \expandafter, using \theimportantmacro as 〈token〉 and the second \expandafter

as 〈next token〉.
3. According to the rules, TEX expands 〈next token〉 once. But: 〈next token〉 is again a macro, namely

\expandafter! Does that make a difference? No:

(a) The token list after the second \expandafter is ‘{\temp}’ (3 tokens).

(b) The 〈token〉 is thus ‘{’ and 〈next token〉 is ‘\temp’.

(c) The expansion of 〈next token〉 is ‘xyz’.

(d) The second \expandafter re-inserts its 〈token〉 and expanded 〈next token〉, which is
‘{xyz’.
Note that the closing brace ‘}’ has not been touched at all, TEX hasn’t even seen it so far.

We come back from the recursion. Remember: 〈token〉 is \theimportantmacro and the top-level
expansion of 〈next token〉 is – as we have seen above – ‘{xyz’.

4. TEX re-inserts 〈token〉 and the expansion of 〈next token〉 to the input token list, which leads to

‘\theimportantmacro{xyz}’.

The closing brace ‘}’ has not been touched, it simply resides in the input token list.

5. TEX expands \theimportantmacro.

The 〈next token〉 is expanded exactly once. We have already seen that if 〈next token〉 is a macro which
does substitutions on its own, these substitutions will be performed recursively. But what means ‘once’
exactly? We will need to use \meaning to check that (or the \tracingmacros tools) because we need
to see what TEX does.

So far, nothing has been typeset. But now: 4[This is macro one –2–].

8

\def\macroone{This is macro one \macrotwo}

\def\macrotwo{--2--}

\def\macrothree#1{\def\macrofour{4[#1]}}

\expandafter\macrothree\expandafter{\macroone}%

So far, nothing has been typeset. But now: \macrofour.

\message{We have macrofour = \meaning\macrofour}%

The logfile (and terminal) will now contain

‘We have macrofour = macro:->4[This is macro one \macrotwo]’.

What happened? We can proceed as in the last example. After the two \expandafter expansions, TEX
finds the input token list

‘\macrothree{This is macro one \macrotwo}’

which, after execution, defines \macrofour to be ‘This is macro one \macrotwo’. The top-level ex-
pansion of \macroone has not expanded the nested call to \macrotwo.

So, \expandafter is a normal macro which can be expanded – and it is even possible to expand an
\expandafter by another \expandafter.

What we have seen so far is

1. the \def command which stores unexpanded arguments in a macro variable and

2. the \expandafter which allows control over top-level expansion of macros (it expands one time).

TEX provides two more features for expansion control: the \edef macro and token registers.

\edef〈\macroname〉〈argument pattern〉{〈replacement text〉}
The \edef command is the same as \def insofar as it defines a new macro. However, it expands
{〈replacement text〉} until only unexpandable tokens remain (\edef = expanded definition).

\def\a{3}

\def\b{2\a}

\def\c{1\b}

\def\d{value=\c}

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

\edef\d{value=\c}

\message{Macro ‘d’ is e-defined to be ‘\meaning\d’}

\expandafter\def\expandafter\d\expandafter{\c}

\message{Macro ‘d’ is defined to be ‘\meaning\d’ using expandafter}

This listing results in the log-file output

Macro ‘d’ is defined to be ‘macro:->value=\c ’

Macro ‘d’ is e-defined to be ‘macro:->value=123’

Macro ‘d’ is defined to be ‘macro:->1\b ’ using expandafter

So, \def does not expand at all, \edef expands until it can’t expand any further and the \expandafter
construction expands \c one time and defines \d to be the result of this expansion.

Although possible, it might not occur too often to specify 〈argument pattern〉 for an \edef because the
expansion is immediate in contrast to \def. But it works in the same way: the positional arguments
#1, #2, . . . , #9 will be replaced with their arguments.

The expansion of {〈replacement text〉} happens in the same way as the expansion the main token list
of TEX.

Now, what exactly does “expands until only unexpandable tokens remain” mean? Our example indicates
that the three tokens 1, 2 and 3 are not expandable while the macros \c, \b and \a could be expanded.
There is one large class of TEX commands which can’t be expanded: any assignment operation. The
example

\edef\d{\count0=42}

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

\def\a{1234}

\edef\d{\advance\count0 by\a}

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

yields the log-messages

9

Macro ‘d’ is defined to be ‘macro:->\count 0=42’ and

Macro ‘d’ is defined to be ‘macro:->\advance \count 0 by1234’.

So, assignment and arithmetics operations are not expandable, they remain as executable tokens in the
newly defined macro. This does also hold for \let and other assignment operations.

Interestingly, conditional expressions using \if · · · \fi are expandable, but we will come to that later.

There is also a method to convert a macro temporarily into an unexpandable token: the \noexpand

macro.

\noexpand〈expandable token〉
The \noexpand command is only useful inside of the {〈replacement text〉} of an \edef command. As
soon as \edef encounters the \noexpand, the \noexpand will be removed and the 〈expandable token〉
will be converted into an unexpandable token. Thus, the code

\edef\d{Invoke \noexpand\a another macro}

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

yields the terminal output

Macro ‘d’ is defined to be ‘macro:->Invoke \a another macro’

because \noexpand\a yields the token ‘\a’ (unexpanded)3.

2.3.2 Token Registers

Now, we turn to token registers. As we have already seen in Section 2.1, a token register stores a token list.
A macro does also store a token list in its {〈replacement text〉}, so where is the difference? There are two
differences:

1. Token registers are faster.

2. The contents of token registers will never be expanded.

I can’t give numbers for the first point – I have just read it in [2]. But the second point allows expansion
control. While \edef allows “infinite” expansion, token registers allow only top–level expansion, just like
\expandafter. But they can be used in a more flexible (and often more efficient) way than \expandafter.

The following examples demonstrates the second point.

\toks0={A \token list \a \b \count0=42 will never be expanded}

\edef\d{\the\toks0 }% the space token is important!

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

Executing this code fragment yields the log output
Macro ‘d’ is defined to be ‘macro:->A \token list \a \b \count 0=42 will never be expanded’.
So, the contents of \toks0 has been copied unexpanded into \d, although we have just \edef. Note

that the space token after \the\toks0 is indeed important! TEX uses it to delimit the integer 0. Without
the space token, it would have continued scanning, even beyond the boundaries of the replacement text of
\edef (see Section 2.1 for details about this scanning).

The example is very simple, and we could have done the same with \expandafter as before. But let’s
try something more difficult: we want to assemble a new macro which consists of different pieces. Each piece
is stored in a macro, and for whatever reason, we only want top-level expansion of the single pieces. And:
the pieces won’t be adjacent to each other. We can assemble the target macro using the following example
listing.

\def\piecea{\a{xyz}}

\def\pieceb{\count0=42 }

\def\piecec{string \b}

\toks0=\expandafter{\piecea}

\toks1=\expandafter{\pieceb}

\toks2=\expandafter{\piecec}

\edef\d{I have \the\toks0 and \the\toks1 and \the\toks2}

\message{Macro ‘d’ is defined to be ‘\meaning\d’}

3The \noexpand key is actually used to implement the LATEX command \protect: LATEX’s concept of moveable arguments
is implemented with \edef.

10

The first three lines define our pieces. Each of the macros \piecea, \pieceb and \piecec contains tokens
which should not be expanded during the definition of \d. The three following lines assign the top-level
expansion of our pieces into token registers. Since \toks0={\piecea} would have stored ‘\piecea’ into the
token register, we need to use \expandafter here4. Then, we use \the\toks〈number〉 to insert the contents
of a token list somewhere – in our case, into the expanded replacement text of our macro \d. Thus, the
complete example yields the log–output

Macro ‘d’ is defined to be ‘macro:->I have \a {xyz}and \count 0=42 and string \b ’.
It is possible to get exactly the same result using (a lot of) \expandafters. Don’t try it.

2.3.3 Summary of macro definition commands

Besides \def and \edef, there are some more commands which allow to define macros (although the main
functionality is covered by \def and \edef). Here are the remaining definition commands.

\def〈\macroname〉〈argument pattern〉{〈replacement text〉}
Defines a new macro named \macroname without expanding {〈replacement text〉}, see above.

\edef〈\macroname〉〈argument pattern〉{〈replacement text〉}
Defines a new macro named \macroname, expanding {〈replacement text〉} completely (see above).

\let〈\newmacro〉=〈token〉
Defines or redefines \newmacro to be an equivalent to 〈token〉. For example, \let\a=\b will create a
new copy of macro \b. The copy is named \a, and it will have exactly the same {〈replacement text〉}
and 〈argument pattern〉 as \b.

It is also possible that 〈token〉 is something different than a macro, for example a named register or a
single character.

\gdef〈\macroname〉〈argument pattern〉{〈replacement text〉}
A shortcut for \global\def. It defines \macroname globally, independent of the current scope.

You should avoid macros which exist in both, the global namespace and a local scope, with different
meanings. Section 2.4 explains more about scoping.

\xdef〈\macroname〉〈argument pattern〉{〈replacement text〉}
A shortcut for \global\edef. It defines \macroname globally, independent of the current scope.

You should avoid macros which exist in both, the global namespace and a local scope, with different
meanings. Section 2.4 explains more about scoping.

\csname〈expandable tokens〉\endcsname

This command is not a macro definition, it is a definition of a macro’s name. The “cs” means “control
sequence”. The \csname, \endcsname pair defines a control sequence name (a macro name) using
〈expandable tokens〉. The control sequence character ‘\’ will be prepended automatically by \csname.5

This here is normal usage: ‘Content’.

This here uses csname: ‘Content’.

\def\macro{Content}

This here is normal usage: ‘\macro’.

This here uses csname: ‘\csname macro\endcsname’.

The example demonstrates that \csname〈expandable tokens〉\endcsname is actually the same as if you
had written \〈expandable tokens〉 directly – but the \csname construction allows much more tokens
inside of macro names:

I use a strange macro. Here is it: ‘Content’.

\expandafter\def\csname a01macro with.strange.chars\endcsname{Content}

I use a strange macro. Here is it: ‘\csname a01macro with.strange.chars\endcsname’.

4We could have eliminated the \piece* macros by writing everything into token registers directly. But I think this example
is more realistic.

5In fact, the contents of \escapechar will be used here. If its value is -1, no character will be prepended. The same holds
for any occurrence where a backslash would be inserted by TEX commands.

11

The example uses \expandafter to expand \csname one time. The top–level expansion of \csname

is a single token, namely the control sequence name. Then, \def is used to define a macro with the
prepared macro name.

When \csname is expanded, it parses all tokens up to the next \endcsname. Those tokens will be
expanded until only unexpandable tokens remain (as in \edef). The resulting string will be used to
define a macro name (with the control sequence character ‘\’ prepended). The fact that 〈expandable
tokens〉 is expanded allows to use “indirect” macro names:

I have just defined “macroonetwothree

with replacement text ‘Content’.

\def\macro{onetwothree}

\expandafter\def\csname macro\macro\endcsname{Content}

I have just defined \expandafter\string\csname macro\macro\endcsname

with replacement text ‘\csname macro\macro\endcsname’.

I suppose the example is self-explaining, up to the \string command which is described below.

Due do this flexibility, \csname is used to implement all (?) of the available key–value packages in TEX.

\string〈\macro〉
This command does not define a macro. Instead, it returns a macro’s name as a sequence of separate
tokens, including the control sequence token ‘\’.

I have just defined ‘“macro’ using ‘“def’.

\def\macro{Content}

I have just defined ‘\string\macro’ using ‘\string\def’.

You can also use \string on other tokens – for example characters. That doesn’t hurt, the character
will be returned as-is.

2.3.4 Debugging Tools – Understanding and Tracing What TEX Does

\message{〈tokens〉}

\meaning〈\macro〉

\tracingmacros=2

\tracingcommands=2

\tracingrestores=1

2.4 The Scope of a Variable

Each programming language knows the concept of a scope: they limit the effect of variables or routines.
However, TEX’s scoping mechanisms have not been designed for programming – TEX is a typesetting lan-
guage. Many programming languages like C, C++, java or a lot of scripting languages define the scope of a
variable using the place where the variable has been defined. For example, the C fragment

int i = 42;

{

++i;

int i = 5;

}

changes the value of the outer i to 43. The inner i is 5, but it will be deleted as soon as the closing brace is
encountered. It may even be possible to access both, the value of the inner i variable and the value of the
outer i variable, at the same time.

In TEX, braces are also used for scopes. But: while TEX will also destroy any variables (macros) defined
inside of a scope at the end of that scope, it will also undo any change which has been applied inside of that
scope.

12

The value of \i is now 42.

\def\i{42}

{

\def\i{43}

\def\b{2}

}

The value of \textbackslash i is now \i.

The listing above defines \i, enters a local scope (a TEX “group”) and changes \i. However, due to
TEX’s scoping rules, the old program state will be restored completely after returning from the local group!
Neither the change to \i nor the definition of \b will survive. The same holds for register changes or other
assignments.

TEX groups can be created in one of three ways: using curly braces6, using \begingroup or using \bgroup.
Curly braces are seldom used to delimit TEX groups because the other commands are more flexible. If one
uses curly braces, they need to match up – it is forbidden to have unmatched curly braces.

\begingroup

Starts a new TEX group (a local scope). The scope will be active until it will be closed by \endgroup.
The \endgroup command can occur later in the main token list.

\endgroup

Ends a TEX group which has been opened with \begingroup.

\bgroup

A special variant of \begingroup which can also be used to delimit arguments to \hbox or \vbox (i.e.
it avoids the necessity to provide matched curly braces in this context).

The \bgroup macro is also useful to test whether the next following character is an opening brace (see
\futurelet).

If one just needs to open a TEX group, one should prefer \begingroup.

\egroup

Closes a preceding \bgroup.

TEX does not know how to write into macros of an outer scope – except for the topmost (global) scope.
This restriction is quite heavy if one needs to write complex structures: local variables should be declared
inside of local groups, but changes to the structure should be written to the outer group. There is no direct
possibility to do such a thing (except global variables).

2.4.1 Global Variables

TEX knows only “global” variables and “local” variables. A local variable will be deleted at the end of the
group in which it has been declared. All values assigned locally will also be restored to their old value at
the end of the group.

A global variable, on the other hand, maintains the same value throughout every scope. Usually, the
topmost scope is the same as the one used for global variables: if you define anything in your TEX document,
you add commands on global scope. It is also possible to explicitly make assignments or definitions in the
global scope.

\global〈definition or assignment〉
The definition which follows \global immediately will be done globally.

{

\global\def\a{123}

\global\advance\count0 by3

\global\toks0={34}

}

6Or other tokens with the correct category code, compare [2].

13

\globaldefs=-1|0|1 (initially 0)

I cite from [2]: “If the \globaldefs parameter is positive at the time of an assignment, a prefix of
\global is automatically implied; but if \globaldefs is negative at the time of the assignment, a prefix
of \global is ignored. If \globaldefs is zero (which it usually is), the appearance of nonappearance
of \global determines whether or not a global assignment is made.”

2.4.2 Transporting Changes to an Outer Group

There are a couple of methods to “transport” changes to an outer scope. Some are copy operations, some
require to redo the changes again after the end of the scope. All of them can be implemented using expansion
control.

Let’s start with macro definitions which should be carried over the end of the group. I see the following
methods:

• Copy the macro into a global, temporary variable (or even token register) and get that value after the
scope.

\def\initialvalue{0}

{

% do something:

\def\initialvalue{42}

\global\let\myglobaltemporary=\initialvalue

}

\let\initialvalue=\myglobaltemporary

The idea is that \myglobaltemporary is only used temporary; its value is always undefined and can
be overwritten at any time. This allows to use a local variable \initialvalue.

Please note that you should not use variables both globally and locally. This confuses TEX and results
in a slow-down at runtime.

• “Smuggle” the result outside of the current group. I know this idea from the implementation of [4]
written by Mark Wibrow and Till Tantau. The idea is to use several \expandafters and a \def to
redefine the macro directly after the end of the group:

\def\smuggle#1\endgroup{%

\expandafter\endgroup\expandafter\def\expandafter#1\expandafter{#1}%

}

\begingroup

\def\variable{12}

\edef\variable{\variable34}

\edef\variable{\variable56}

\smuggle\variable

\endgroup

The technique relies on groups started with \begingroup and ended with \endgroup because un-
matched braces are not possible with \def. The effect is that after all those \expandafters, TEX
encounters the token list

\endgroup\def\variable{123456}

at the end of the group.

• Use the aftergroup stack. TEX has a special token stack of limited size which can be used to re-insert
tokens after the end of a group. However, this does only work efficiently if the number of tokens which
need to be transported is small and constant (say, at most three). It works by prefixing every token
with \aftergroup, compare [2] for details.

Sometimes one needs to copy other variables outside of a scope. The trick with a temporary global
variable works always, of course. But it is also possible to define a macro which contains commands to apply
any required changes and transport that macro out of the scope.

14

2.5 Branching

Here we discuss some of the available branching constructions of TEX, with emphasis on conditions involving
numbers and tokens.

ifnum〈count/integer number〉=〈count/integer number〉〈true-block〉\else〈false-block〉\fi
\ifnum compare integer numbers or integer registers (\count registers) and contains two branches, one
is executed in the true case, the other in the case of false:

This is shown if above results to false.

\ifnum1=2 % this space is important.

This is shown if above were true.

\else

This is shown if above results to false.

\fi

Note that the \else with its 〈false-block〉 is optional.

ifdim〈dimen/fixed point number〉=〈dimen/fixed point number〉〈true-block〉\else〈false-block〉\fi
Similar to \ifnum, \ifdim compares two fixed point numbers or \dimen registers. The numbers must
have a unit.

This is shown if above results to false.

\ifdim1pt=2pt % this space is important.

This is shown if above were true.

\else

This is shown if above results to false.

\fi

ifx〈token1 〉〈token2 〉〈true-block〉\else〈false-block〉\fi
\ifx is a bit more complex: It compares two tokens up to their first-level expansion.

This is shown if the two tokens have equal expansion.

\def\empty{\empty}

\ifx\empty\empty %

This is shown if the two tokens have equal expansion.

\else

This is shown if the two tokens expand to something different.

\fi

Here, we have defined a token \empty to be a replacement for \empty and subsequently have compared
whether these two tokens are equal in first-level expansion. Note that the definition is actually nonsense.
If TEX ever were to go through the whole expansion – i.e. we would put \empty somewhere else – it
would do so indefinitely. However, with \ifx only first-level expansion is done and compared. Hence,
the statement evaluates to true.

Have a look at the following example:

This is shown if the two tokens expand to something different.

\def\empty{\relax}

\ifx\empty\relax %

This is shown if the two tokens have equal expansion.

\else

This is shown if the two tokens expand to something different.

\fi

On first glance, this should evaluate to true: \empty is defined as a replacement for \relax. But it does
not. Why?

\empty is expanded to \relax, however \relax expanded has a different meaning, namely stop scanning
and not \relax anymore. Hence, they are different and the statement is false! If the expansion in \ifx

were to be taken till maximum, both would be equal but not in the case of a comparison on first-level
expansion only.

15

if〈token1 〉〈token2 〉〈true-block〉\else〈false-block〉\fi
The \if comparison is closely related to the \ifx conditional, with one major exception: it expands
tokens until it finds the next two unexpandable tokens. If these two tokens are the same, it expands to
the 〈true-block〉, otherwise to the 〈false-block〉.
The \if conditional should be handled with care as it might produce undesirable effects. Use it only if
you know what you do.

A useful example is if you know that a macro contains at most one character, and you want to test for
a particular one:

This is shown for all other choices.

\def\choice{a}

\if b\choice

This is shown for the ‘b’ choice.

\else

This is shown for all other choices.

\fi

iftrue〈true-block〉\else〈false-block〉\fi
A “conditional” which always invokes the 〈true-block〉.

iffalse〈true-block〉\else〈false-block〉\fi
A “conditional” which always invokes the 〈false-block〉.

2.5.1 Boolean Variables

\newif〈if-name〉
You can declare a new “boolean variable ‘\ifsupermanmode by means of \newif\ifsupermanmode.
Afterwards, you can use the \supermanmodetrue and \supermanmodefalse switches to assign the
boolean and \ifsupermanmode to check it.

The 〈if-name〉 has to start with \if (to support scans for nested \if...\fi pairs, see below).

2.5.2 Special Cases for Conditionals

Whenever you work with \if. . . and friends, you should know the following features:

1. \if...\else...\fi is expandable (including each of the single macros \if..., \else and \fi), which
means you can even use it inside of \edef:

We have now temp=macro:->The choice is ‘a’.

\def\choice{a}

\edef\temp{The choice is \if a\choice ‘a’\else not ‘a’\fi}

We have now \texttt{\string temp=\meaning\temp}.

The next token is ‘2’.3

\def\shownexttoken#1{The next token is ‘\texttt{\string#1}’.}

\def\mymacro{%

\ifnum1=1 %

\expandafter\shownexttoken%

\fi%

}%

\mymacro 23

This example is tricky. What would have happened without the \expandafter!? Well,
\shownexttoken would be invoked with #1=\fi. This would lead to an error because the \fi would
be missing, and it would spoil the effect since we do not want the \fi to be seen – we expected #1=2.
The \expandafter first expands \fi (which simply removes the \fi without further effect) such that
\shownexttoken will see the 2 token in our example above. This would also have worked if there was
an \else branch instead of \fi.

16

2. You should generally make sure that the matching \else or \fi tokens are “directly reachable”, i.e.
without token expansion.

The background here is that TEX works on a token–based level: Whenever it encounters an \if. . .
statement, it evaluates it and scans tokens to find the matching end part (either an \else or an \fi

token). But it will not expand tokens during this scan, although it will count nested \if...\fi pairs!
Thus, if you are careless, it might become confused and your conditional will go awry.

2.6 Loops

As you have seen, in TEX we have a very specific control over token expansion. This makes it possible to
construct even loops via means of recursion. In essence, a loop consist of the following parts:

• counter or, more generally, list of items

• incrementor, or more generally, a next item picker

• threshold or, more generally, an end list marker

• a check of the threshold or end marker, respectively

Reafing through the sections above, we realize that all of this is actually in place: We do know about
counters, we do know about branching. Only the specifics of how to create these loops is still to be made
clear. We will show both cases, the counting loop and the loop over a list of items in the following in detail.

In general, for a loop done via a recursion we need two definitions: One for the loop start and another
for the loop step.

2.6.1 Counting loops

For a counting loop, we need a counter \count0, an incrementor \advance, a threshold 3 and a check
\ifnum\count=10 if the threshold has been reached.

The current value is ‘0’
The current value is ‘1’
The current value is ‘2’
The current value is ‘3’

\long\def\countingloop#1 in #2:#3#4{%

#1=#2 %

\loopcounter{#1}{#3}{#4}%

}

\long\def\loopcounter#1#2#3{%

#3%

\ifnum#1=#2 %

\else%

\advance#1 by1 %

\loopcounter{#1}{#2}{#3}%

\fi%

}

\countingloop{\count0} in 0:{3}{%

The current value is ‘\the\count0’\par

}

There are some subtleties to the above example:

• We put a lot of % in the example. Why? Note that whenever TEX scans for a number – e. g. as in
the case of #1=#2 – it will continue scanning token by token, that is digit by digit, till he is sure that
the number has ended, even over white space, and even expanding macros in case they themselves
might not represent numbers again. Hence, % tells TEX to stop scanning. It is generally good practice
to place % to tell TEX to stop scanning for more digits. However, there are some exceptions to it as
well: In case of \advance#1 by1 one should keep a white space in between, as well as in the case of
\ifnum#1=#2.

• We placed the threshold 3 in \countingloop{\count0} in 0:{3} in curly brackets. Why? TEX
otherwise will recognize only the token 1 if a threshold of e g. 10 is given and stumble over the now
remnant ‘extra’ argument 0. That is because a single letter represents a token to TEX. Hence, two

17

letters are two tokens and – ungrouped – become two arguments. Here, we have to group the threshold
to make clear what we mean.

• One last thing becomes clear first when debugging is activated: As loops are done by recursion, i. e.
by expansion followed by expansion till some threshold is reached, we will end with a lot of \fis in
the above case. If we place \tracingmacros=2 \tracingcommands=2 before the \countingloop call
and inspect the log file this will become apparent. This is bad because TEX will keep a stack frame
open for each \if. . . \fi sequence. If we now have a loop over 10.000 items . . .

• It is not good practice to use one of the system counters, here \count0, because one can never be sure
that is not used for something else or changed somewhere else. E. g. when the page is full, TEX will
interrupt the current sequence of tokens to deal with creating a new page and finishing the old one, in
this course changing \count0. Hence, we should also create our own counter.

Hence, we modify the example as follows:

The current value is ‘0’
The current value is ‘1’
The current value is ‘2’
The current value is ‘3’

\long\def\countingloop#1 in #2:#3#4{%

#1=#2 %

\loopcounter{#1}{#3}{#4}%

}

\long\def\loopcounter#1#2#3{%

#3%

\ifnum#1=#2 %

\let\next=\relax%

\else

\advance#1 by1 %

\def\next{\loopcounter{#1}{#2}{#3}}%

\fi

\next

}

\newcount\ourcounter

\countingloop{\ourcounter} in 0:{3}{%

The current value is ‘\the\ourcounter’\par

}

Principally, nothing has changed in terms of the output. However, notice that we have introduced the
macro \next which either recurses into the next level – but after the \fi statement has been given – or ends
the recursion by simply containing \relax. Also, we have declared a new counter called \ourcounter that
is safe from harm.

Finally, let us briefly summarize what happens in detail:

1. \countingloop. . . is expanded to an assignment #1=#2 and another macro \loopcounter. . . .

2. The assignment is done: \ourcounter is set to the starting value 0.

3. The actual loop macro is expanded to the command block – printing the current value – and an if
statement.

4. The current value is printed.

5. \ourcounter is compared to the threshold 3 and . . .

• False, i. e. the if statement is expanded to an \advance statement followed by defining \next to
be another call of the same macro loop.

• True, i. e. \next is set to be just \relax.

6. The statement is still false: \advance will increase \ourcounter by one, it is now 1. \next is set to
the loop macro.

7. The loop macro is again expanded, go to step 3. \ourcounter is . . . 2 . . . \ourcounter is 3.

8. Now the statement is true: \next is expanded to \relax and nothing happens.

18

2.6.2 Loops over list of items

Looping over a list of items is very similar, only we will need \ifx in place of \ifnum and we need some
end marker instead of the threshold value. However, how do we specify the list itself? Let’s make some
comma-separated list, e. g. {a,b,c,d} and call the end marker \listingloopENDMARKER.

The current item is ‘a’
The current item is ‘
b’
The current item is ‘
c’
The current item is ‘
’
The current item is ‘
d’
The current item is ‘
e’

\def\listingloopENDMARKER{\par \listingloopENDMARKER}

\long\def\listingloop#1in#2#3{%

\looppicker{#1}{#3}#2,\listingloopENDMARKER,%

}%

\long\def\looppicker#1#2#3,{%

\def\tempitem{#3}%

\ifx\tempitem\listingloopENDMARKER

\let\next=\relax%

\else

\def#1{#3}%

#2%

\def\next{\looppicker{#1}{#2}}%

\fi

\next

}%

\listingloop\x in{a,b,c,,d,e}{%

The current item is ‘\x’

}

Again, we make clear the subtleties contained therein:

• We have defined \listingloopENDMARKER to replace itself. This is possible because \ifx will only
compare first-level expansion, see Section 2.5.

• We seem to miss a white space in . . . #1in#2. . . . However, tokens are always ending with an additional
white space as \xin is not equal to \x in. Hence, none is needed here and more than one white space
would probably get gobbled.

• The definition \looppicker#1#2#3,. . . has three arguments but the recursive call \looppicker{#1}{#2}
only gives two arguments!? This is the actual magic making this type of list possible! TEX is actually
scanning beyond the scope of the given token to obtain the third argument. In effect, we are biting
off piece by piece, list item by list item off the given list. All because we have stated an additional ,
– comma being the item separator – in the definition of the \looppicker macro. The expansion of
the loop macro will always pick up one more item from the list concatenated to its end until it has
reached the \ENDMARKER. This is added to the list’s very end on the loop’s start, and there it stops.

2.7 More On TEX

This document is far from complete. I recommend reading about conditional expressions in [3] (German,
online version) or [2] (bounded book). Hints about loops can be found in the manual of pgfplots, [1] and
the manual of pgf, [4]. Moreover, pgfplots and pgf come with a whole lot of utility functions which are
documented in the source .code.tex files.

3 Survey of Key–Value Handling using pgfKeys

One of the most important things for every TEX package is key–value input. There is a good overview and
survey over different key–value packages, among them xkeyval and pgfkeys, in [5].

19

In addition to the paper mentioned above and the extensive reference manual for pdfkeys in [4], I give a
brief survey over pgfkeys here. The addressed audience is primarily package writers or macro programmers.
This section should allow you to define your own user interfaces and styles for pgfplots and for pgf. It
should also improve the understanding of pgfkeys and how it is to be used. I also address the topic of key
filtering which is mainly useful for package writers.

The package pgfkeys is available as stand–alone package \usepackage{pgfkeys}. However, I believe
that you never need to load it explicitly as pgf will be loaded anyway and pgf always loads pgfkeys.

It comes with two user interfaces. I believe that it is a best–practice to use the best of both worlds;
although it might be sufficient to use just one of them. Consequently, I discuss both of them and propose a
best–practices afterwards.

3.1 The Low–Level (Direct) Api of pgfKeys

Let us start with the low–level Api of pgfKeys. It consists of a couple of macros which allow to define keys,
assign values, and get their values back.

\pgfkeyssetvalue{〈/key path/key name〉}{〈value〉}
This macro (re)defines a key.

It is (almost) equivalent to a macro definition of sorts

\expandafter\def\csname key@〈/key path/key name〉\endcsname{〈value〉};

i.e. it stores 〈value〉 into a new macro such that the key can be looked up in constant time in TEX’s hash
map. Note that in contrast to other key–value packages like xkeyval, the low–level macro name which
is used to store the value is not part of the pgfKeys Api7 – use \pgfkeysgetvalue and its friends to
access the value.

The only limit for the number of possible keys is the size of TEX’s hash map (which is very large).

You may have wondered what the slash ‘/’ means. Users which are accustomed to pgf/pgfplots know
that there exists some kind of “key path” which qualifies 〈key name〉. The 〈key path〉 has the purpose
of providing a name space such that many many keys with the same name can exist piecefully without
ever touching another – provided the correct 〈key path〉 has been used. It can be seen as a (unix) file
path: you can have many files with the same name, provided the files reside in different directories (i.e.
have different paths).

You should always provide a key path, and it is highly recommended to use a different key path than
just ‘/’.

The 〈value〉 can be anything; it is just stored. It can even contain #.

\pgfkeysgetvalue{〈/key path/key name〉}{〈\macro〉}
As you might have guessed, this macro allows to retrieve the value for some key and store it into
〈\macro〉.
Now that we have read about \pgfkeyssetvalue and \pgfkeysgetvalue, we can also provide an
example:

The value of key /notes/key is ‘abc’.

\pgfkeyssetvalue{/notes/key}{abc}

\pgfkeysgetvalue{/notes/key}\temp

The value of key \texttt{/notes/key} is ‘\temp’.

There is few magic around these two keys; it is just like a hashmap access with some special naming
convention for the keys (due to the key path). Note that since “hashmap access” is what TEX does all the
time when it handles macros, we could have replaced the pair \pgfkeyssetvalue/\pgfkeysgetvalue
by \def and suitable \let commands, perhaps combined with \csname...\endcsname. The advantage
of pgfKeys comes into play as soon as we inspect the high–level user interface in the next section.

Note that since \pgfkeyssetvalue is essentially the same as a suitable \def, the assignment is local to
the current TEX group. In other words: the assignment will be undone by the next closing curly brace,
or the next \endgroup, or the next \end{〈environment〉}.

7Note that key@ is unrelated to pgfKeys.

20

\pgfkeyslet{〈/key path/key name〉}{〈\macro〉}
This is essentially the same as \pgfkeyssetvalue, except that the key’s value is already available inside
of 〈\macro〉:

The value of key /notes/key is ‘abc’.

\def\something{abc}

\pgfkeyslet{/notes/key}{\something}

\pgfkeysgetvalue{/notes/key}\temp

The value of key \texttt{/notes/key} is ‘\temp’.

Just like \pgfkeyssetvalue boils down to \def, \pgfkeyslet boils down to \let.

\pgfkeysvalueof{〈/key path/key name〉}
This is essentially the same as \pgfkeysgetvalue{〈/key path/key name〉}{〈\macro〉} 〈\macro〉; i.e. it
expands to the value stored in a key.

The value of key /notes/key is ‘abc’.

\pgfkeyssetvalue{/notes/key}{abc}

The value of key \texttt{/notes/key} is ‘\pgfkeysvalueof{/notes/key}’.

However, this key has one major advantage: it can be used inside of an \edef (because it is fully
expandable):

The value of key /notes/key along with dashes is — abc —.

\pgfkeyssetvalue{/notes/key}{abc}

\edef\temp{--- \pgfkeysvalueof{/notes/key} ---}

The value of key \texttt{/notes/key} along with dashes is \temp.

It boils down to a suitable \csname ... \endcsname. Consequently, it expands to \relax if the key
happens to be undefined (see \pgfkeysifdefined below).

\pgfkeysdef{〈/key path/key name〉}{〈macro body〉}
This is a variant of \pgfkeyssetvalue. However, it has a substantial difference which appears to be
unmotivated as long as we discuss the low–level Api. It defines a so–called code–key.

Code–keys are executable macros. They take an argument, and they do something with it. “Assigning
values” to such a key is equivalent to invoking 〈macro body〉 in a “suitable” way.

The result of this macro call is a new key named 〈/key path/key name/ 〉.@cmd. That key, in turn, is
stored as executable macro. The macro is equivalent to the following definition (up to the name, of
course):

\def\macro#1\pgfeov{〈macro body〉}.

This macro is stored (using \pgfkeyslet) under 〈/key path/key name/ 〉.@cmd.

We can use \pgfkeysgetvalue and/or \pgfkeysvalueof to access this special key8, even though its
use becomes more apparent later in this document:

We “assign a value” or “execute the code key” (which is equivalent):

Expansion with value abc—X.

\pgfkeysdef{/notes/code key}{Expansion with value #1---X.}%

We ‘‘assign a value’’ or ‘‘execute the code key’’ (which is equivalent):

\pgfkeysvalueof{/notes/code key/.@cmd}abc\pgfeov

Note that in this case, we have to use \pgfeov to terminate the argument list. We could have placed our
argument into curly braces, but we have to provide \pgfeov; just as we had to add the suffix /.@cmd.

8Note that the suffix /.@cmd is part of the public Api of pgfKeys, so it is no hackery to make use of it.

21

\pgfkeysifdefined{〈/key path/key name〉}{〈true case〉}{〈false case〉}
\pgfkeysifassignable{〈/key path/key name〉}{〈true case〉}{〈false case〉}

These keys provide conditionals based on existance or type of a key. Please refer to the reference manual
in [4] for details.

3.2 The Standard Api of pgfKeys

Now that we have seen how things defined by pgfKeys can be accessed at a rather low level of abstraction,
we will repeat the same using a higher level. This section explains the standard Api of pgfKeys; this is how
Keys can be defined and maintained easily, and it is also the end user interface.

pgfKeys addresses a couple of use–cases with its standard API:

1. simple key–value storage (i.e. put and get),

2. code–keys which can do some (complex) operation whenever the key is used,

3. configuration and modification of the key–value tool.

All of these items are possible with the same macro:

\pgfkeys{〈comma–separated key–value pairs〉}
This key constitutes the public Api of pgfKeys. It accepts any number of key–value pairs, separated
by commas.

We start with an example:

The value of key /notes/key is ‘abc’.The value of key /notes/key is ‘efg’.

% key definition:

\pgfkeys{

/notes/key/.initial=abc,

}

The value of key \texttt{/notes/key} is ‘\pgfkeysvalueof{/notes/key}’.

% key usage:

\pgfkeys{

/notes/key = efg ,

}

The value of key \texttt{/notes/key} is ‘\pgfkeysvalueof{/notes/key}’.

There are some items which appear to be clear, and I will briefly confirm that it really is clear: white
spaces before and after the key name and before and after the value are stripped away. Furthermore, trailing
commas are ignored. Note that trailing commas are a best–practice: always insert trailing commas. This
simplifies the addition of further keys significantly (I can’t remember how often I added a key and wondered
why it was not properly recognised until I found the missing comma). Just add the trailing comma as a
habit. Another good practice is to indent code properly, i.e. to insert a tab stop for every new line. It is also
a good idea to provide one key per line, although all that stuff is optional.

The first thing which is strange when inspecting the actual code is the suffix ‘/.initial’. This is, in
fact, a consistent new system of pgfKeys: these suffixes allow to configure and modify the keys to which
them apply. They are called “key handlers”. Whenever you encounter 〈key path/key name〉 followed by
‘/.〈handler〉’, you can safely assume that 〈key path/key name〉 is about to be reconfigured or modified.

Knowledge of key handlers means control over pgfKeys. In the following, I will briefly discuss the most
important handlers.

Key handler 〈key〉/.initial={〈value〉}
The key handler /.initial defines a new 〈key〉 and assigns its initial 〈value〉.
As such, it is equivalent to \pgfkeyssetvalue{〈key〉}{〈value〉}.

That a key which has been defined by means of /.initial can be set at any time later using a simple
value assignment (see the example above).

Consequently, the first definition needs the suffix, all following assignments need to assignment to set
the value.

22

Key handler 〈key〉/.code={〈body〉}
This key handler defines a new code–key 〈key〉 with 〈body〉 as result.

Execute the key using the simple API:Expansion with value abc—X.... execute the key using assign-
ment in the standard API:Expansion with value abc—X.

\pgfkeys{

/notes/code key/.code={Expansion with value #1---X.},

}%

Execute the key using the simple API:

\pgfkeysvalueof{/notes/code key/.@cmd}abc\pgfeov

... execute the key using assignment in the standard API:

\pgfkeys{/notes/code key=abc}

We see that assignment of a code key means to executing 〈body〉 where #1 is set to the value assigned
in the Api.

A key defined by means of /.code is equivalent to one defined by means of \pgfkeysdef.

Note that the argument 〈body〉 can be surrounded by curly braces, but it does not need to be:

\pgfkeys{

/notes/code key/.code={Expansion with value #1---X.},

/notes/code key/.code=Expansion with value #1---X.,

}%

This is a common feature of pgfKeys: any kind of value assignment can use braces, but it does not
need to. You only need to use curly braces if the assigned argument (in our 〈body〉) contains control
characters of pgfKeys (i.e. = or ,).

Key handler 〈key〉/.style={〈option list〉}
This key handler defines a new code–key 〈key〉 which sets all options in 〈option list〉 whenever it is
assigned (used).

Styles are defined in a simple way: they simply invoke \pgfkeys with 〈option list〉 (well, almost – see
below). However, they are very expressive in any kind of application.

Definition has been done. Assigning the style:OK. Value of A=42, value of B=42.

\pgfkeys{

/notes/A/.initial=,

/notes/B/.initial=,

/notes/my style/.style={

/notes/A={#1},

/notes/B={#1},

},

}%

Definition has been done. Assigning the style:

\pgfkeys{

/notes/my style=42

}

OK. Value of A=\pgfkeysvalueof{/notes/A}, value of B=\pgfkeysvalueof{/notes/B}.

Our example is a very simple application of a style: it sets a bunch of other options.

Note that 〈option list〉 can depend on #1.

So far, this document did always provide fully qualified key paths. However /.style explicitly supports
the notion of a “current key path”: if a “current key path” is in effect, 〈option list〉 will be set in a
context which also makes use of the same current key path. Technically, this means that /.style uses
\pgfkeysalso to set 〈option list〉, i.e. it does not use \pgfkeys as claimed above.

\pgfkeysalso{〈comma–separated key–value pairs〉}
This macro is almost the same as \pgfkeys{〈comma–separated key–value pairs〉}. In fact, if any assign-
ments in its argument use fully–qualified paths (as we did so far in this document), both invocations
are equivalent.

23

The difference is how they treat keys which are relative to some current key path, a concept which will
be explained in the next subsection.

Here is the difference between the macros: \pgfkeys resets the current key path to / before processing its
argument whereas \pgfkeysalso does not change the current key path. Consequently, \pgfkeysalso
is only useful inside of the body of some code–key (like /.style).

3.2.1 The Current Key Path

tbd

3.2.2 Key Filtering

tbd

4 Special Tricks

4.1 Handling # in Arguments

More than once, I encountered the following difficulty: I wanted to collect an argument which contains the
hash sign, ‘#’. That’s not particularly difficult, but it can lead to a lot of strange error messages when the
resulting argument shall be processed! Consider

\def\collectargument#1{%

\def\collectedcontent{#1}%

\ifx\collectedcontent\empty

It is empty.

\else

It is not empty, executing it: #1.

\fi

}%

\collectargument{}% works

\collectargument{something}% works

\collectargument{% does not work!

\def\something#1{which depends on #1}

}%

The code in this example is relatively simple: the \collectargument macro expects one argument and
checks if it is empty (using \ifx, which is a common and reliable check for emptiness). It is is not empty, it
executes it. The \collectargument macro works in most circumstances. More precisely: it works as long
as there is no hash sign in its argument! In our example, the third call fails with “Illegal parameter number
in definition of \collectedcontent.” which occurs during the \def\collectedcontent{#1} line (and TEX
has reasons for this message due to the special meaning of the parameter expansion).

The cure: redefine the \collectargument macro using

\def\collectargument#1{%

\toks0={#1}%

\edef\collectedcontent{\the\toks0}%

\ifx\collectedcontent\empty

It is empty.

\else

It is not empty, executing it: #1.

\fi

}%

(you may want to allocate a temporary token register for this task). What is the difference? Well, the
\toks0={#1} assignment introduces no special meaning for the hash sign #, and \the\toks0 neither. Note,
however, that this requires \edef\collectedcontent instead of \def\collectedcontent since the \the

statement needs to be expanded. Everything works as expected.

24

Index

\advance, 4

\begingroup, 13
\bgroup, 13

.code handler, 23
\count, 2
\csname, 11

\def, 6, 11
\dimen, 3, 5
\divide, 5

\edef, 9, 11
\egroup, 13
\endgroup, 13
\expandafter, 7

\gdef, 11
\global, 13
\globaldefs, 14

.initial handler, 22

Key handlers
.code, 23
.initial, 22
.style, 23

\let, 11

\meaning, 6, 12
\message, 12
\multiply, 5

\newcount, 3
\newdimen, 3
\newif, 16
\newtoks, 3
\noexpand, 10

\pgfkeys, 22
\pgfkeysalso, 23
\pgfkeysdef, 21
\pgfkeysgetvalue, 20
\pgfkeysifassignable, 22
\pgfkeysifdefined, 22
\pgfkeyslet, 21
\pgfkeyssetvalue, 20
\pgfkeysvalueof, 21

\relax, 2

\string, 12
.style handler, 23

\toks, 3
\tracingcommands, 12
\tracingmacros, 12
\tracingrestores, 12

\xdef, 11

25

References

[1] C. Feuersänger. pgfplots manual, February 29, 2020.

[2] D. Knuth. Computers & Typesetting. Addison Wesley, 2000.

[3] N. Schwartz. Einführung in TEX (german!). Addison Wesley, 1991. Also available online at http:

//www.ruhr-uni-bochum.de/www-rz/schwanbs/TeX/ as .pdf.

[4] T. Tantau. TikZ and pgf manual. http://sourceforge.net/projects/pgf. v. ≥ 2.00.

[5] J. Wright and C. Feuersänger. Implementing keyval input: an introduction. http://pgfplots.

sourceforge.net as .pdf, 2008.

26

http://www.ruhr-uni-bochum.de/www-rz/schwanbs/TeX/
http://www.ruhr-uni-bochum.de/www-rz/schwanbs/TeX/
http://www.ruhr-uni-bochum.de/www-rz/schwanbs/TeX/einfuehrung-in-tex.pdf
http://sourceforge.net/projects/pgf
http://pgfplots.sourceforge.net
http://pgfplots.sourceforge.net
http://www.morningstar2.demon.co.uk/papers/keyval.pdf

	Introduction
	Programming in TeX
	Variables in Registers
	Allocating Registers
	Using More than 256 Registers

	Arithmetics in TeX
	Expansion Control
	Macros
	Token Registers
	Summary of macro definition commands
	Debugging Tools – Understanding and Tracing What TeX Does

	The Scope of a Variable
	Global Variables
	Transporting Changes to an Outer Group

	Branching
	Boolean Variables
	Special Cases for Conditionals

	Loops
	Counting loops
	Loops over list of items

	More On TeX

	Survey of Key–Value Handling using pgfKeys
	The Low–Level (Direct) Api of pgfKeys
	The Standard Api of pgfKeys
	The Current Key Path
	Key Filtering

	Special Tricks
	Handling # in Arguments

	Index

