
LATEX3 methods for authors

© Copyright 2020, LATEX Project Team.

All rights reserved.

Released 2020-12-02

Contents

1 Introduction 1

2 Creating document commands and environments 2

2.1 Overview . 2
2.2 Describing argument types . 2
2.3 Modifying argument descriptions 3
2.4 Creating document commands and environments 4
2.5 Optional arguments . 5
2.6 Spacing and optional arguments 5
2.7 `Embellishments' . 6
2.8 Testing special values . 7
2.9 Argument processors . 8
2.10 Body of an environment . 10
2.11 Fully-expandable document commands 10
2.12 Details about argument delimiters 11
2.13 Creating new argument processors 12
2.14 Access to the argument speci�cation 13

1 Introduction

LATEX2ε was released in 1994 and added a number of then-new concepts to
LATEX. These are described in usrguide, which has largely remained unchanged.
Since then, the LATEX team have worked on a number of ideas, �rstly a pro-
gramming language for LATEX (expl3) and then a range of tools for document
authors which build on that language. Here, we describe stable and widely-
usable concepts that have resulted from that work. These `new' ideas have been
transferred from development packages into the LATEX2ε kernel. As such, they
are now available to all LATEX users and have the same stability as any other
part of the kernel. The fact that `behind the scenes' they are built on expl3 is
useful for the development team, but is not directly important to users.

1

2 Creating document commands and environ-

ments

2.1 Overview

Creating document commands and environments using the LATEX3 toolset is
based around the idea that a common set of descriptions can be used to cover
almost all argument types used in real documents. Thus parsing is reduced
to a simple description of which arguments a command takes: this description
provides the `glue' between the document syntax and the implementation of the
command.

First, we will describe the argument types, then move on to explain how these
can be used to create both document commands and environments. Various
more specialized features are then described, which allow an even richer appli-
cation of a simple interface set up.

The details here are intended to help users create document commands in
general. More technical detail, suitable for TEX programmers, is included in
interface3.

2.2 Describing argument types

In order to allow each argument to be de�ned independently, the parser does
not simply need to know the number of arguments for a function, but also the
nature of each one. This is done by constructing an argument speci�cation,
which de�nes the number of arguments, the type of each argument and any
additional information needed for the parser to read the user input and properly
pass it through to internal functions.

The basic form of the argument speci�er is a list of letters, where each letter
de�nes a type of argument. As will be described below, some of the types
need additional information, such as default values. The argument types can be
divided into two, those which de�ne arguments that are mandatory (potentially
raising an error if not found) and those which de�ne optional arguments. The
mandatory types

m A standard mandatory argument, which can either be a single token alone
or multiple tokens surrounded by curly braces {}. Regardless of the input,
the argument will be passed to the internal code without the outer braces.
This is the type speci�er for a normal TEX argument.

r Given as r〈token1 〉〈token2 〉, this denotes a `required' delimited argument,
where the delimiters are 〈token1 〉 and 〈token2 〉. If the opening delimiter
〈token1 〉 is missing, the default marker -NoValue- will be inserted after
a suitable error.

R Given as R〈token1 〉〈token2 〉{〈default〉}, this is a `required' delimited ar-
gument as for r, but it has a user-de�nable recovery 〈default〉 instead of
-NoValue-.

2

v Reads an argument `verbatim', between the following character and its
next occurrence, in a way similar to the argument of the LATEX2ε com-
mand \verb. Thus a v-type argument is read between two identical char-
acters, which cannot be any of %, \, #, {, } or . The verbatim argument
can also be enclosed between braces, { and }. A command with a verba-
tim argument will produce an error when it appears within an argument
of another function.

b Only suitable in the argument speci�cation of an environment, it de-
notes the body of the environment, between \begin{〈environment〉} and
\end{〈environment〉}. See Section 2.10 for details.

The types which de�ne optional arguments are:

o A standard LATEX optional argument, surrounded with square brackets,
which will supply the special -NoValue- marker if not given (as described
later).

d Given as d〈token1 〉〈token2 〉, an optional argument which is delimited by
〈token1 〉 and 〈token2 〉. As with o, if no value is given the special marker
-NoValue- is returned.

O Given as O{〈default〉}, is like o, but returns 〈default〉 if no value is given.

D Given as D〈token1 〉〈token2 〉{〈default〉}, it is as for d, but returns 〈default〉
if no value is given. Internally, the o, d and O types are short-cuts to an
appropriated-constructed D type argument.

s An optional star, which will result in a value \BooleanTrue if a star is
present and \BooleanFalse otherwise (as described later).

t An optional 〈token〉, which will result in a value \BooleanTrue if 〈token〉
is present and \BooleanFalse otherwise. Given as t〈token〉.

e Given as e{〈tokens〉}, a set of optional embellishments, each of which
requires a value. If an embellishment is not present, -NoValue- is returned.
Each embellishment gives one argument, ordered as for the list of 〈tokens〉
in the argument speci�cation. All 〈tokens〉 must be distinct.

E As for e but returns one or more 〈defaults〉 if values are not given:
E{〈tokens〉}{〈defaults〉}. See Section 2.7 for more details.

2.3 Modifying argument descriptions

In addition to the argument types discussed above, the argument description
also gives special meaning to three other characters.

First, + is used to make an argument long (to accept paragraph tokens). In
contrast to \newcommand, this applies on an argument-by-argument basis. So
modifying the example to `s o o +m O{default}' means that the mandatory
argument is now \long, whereas the optional arguments are not.

3

Secondly, ! is used to control whether spaces are allowed before optional argu-
ments. There are some subtleties to this, as TEX itself has some restrictions on
where spaces can be `detected': more detail is given in Section 2.6.

Finally, the character > is used to declare so-called `argument processors', which
can be used to modify the contents of an argument before it is passed to the
macro de�nition. The use of argument processors is a somewhat advanced topic,
(or at least a less commonly used feature) and is covered in Section 2.9.

2.4 Creating document commands and environments

\NewDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\RenewDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\ProvideDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\DeclareDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}

This family of commands are used to create a 〈cmd〉. The argument speci�cation
for the function is given by 〈arg spec〉, and the command uses the 〈code〉 with
#1, #2, etc. replaced by the arguments found by the parser.

An example:

\NewDocumentCommand\chapter{s o m}

{%

\IfBooleanTF{#1}%

{\typesetstarchapter{#3}}%

{\typesetnormalchapter{#2}{#3}}%

}

would be a way to de�ne a \chapter command which would essentially behave
like the current LATEX2ε command (except that it would accept an optional ar-
gument even when a * was parsed). The \typesetnormalchapter could test its
�rst argument for being -NoValue- to see if an optional argument was present.
(See Section 2.8 for details of \IfBooleanTF and testing for -NoValue-.)

The di�erence between the \New... \Renew..., \Provide... and \Declare...
versions is the behavior if 〈cmd〉 is already de�ned.

� \NewDocumentCommand will issue an error if 〈cmd〉 has already been de-
�ned.

� \RenewDocumentCommand will issue an error if 〈cmd〉 has not previously
been de�ned.

� \ProvideDocumentCommand creates a new de�nition for 〈function〉 only if
one has not already been given.

� \DeclareDocumentCommand will always create the new de�nition, irrespec-
tive of any existing 〈cmd〉 with the same name. This should be used
sparingly.

4

\NewDocumentEnvironment {〈env〉} {〈arg spec〉} {〈beg-code〉} {〈end-code〉}
\RenewDocumentEnvironment {〈env〉} {〈arg spec〉} {〈beg-code〉} {〈end-code〉}
\ProvideDocumentEnvironment {〈env〉} {〈arg spec〉} {〈beg-code〉} {〈end-code〉}
\DeclareDocumentEnvironment {〈env〉} {〈arg spec〉} {〈beg-code〉} {〈end-code〉}

These commands work in the same way as \NewDocumentCommand, etc., but
create environments (\begin{〈env〉} . . . \end{〈environment〉}). Both the 〈beg-
code〉 and 〈end-code〉 may access the arguments as de�ned by 〈arg spec〉. The
arguments will be given following \begin{〈environment〉}.

2.5 Optional arguments

In contrast to commands created using LATEX2ε's \newcommand, optional ar-
guments created using \NewDocumentCommand may safely be nested. Thus for
example, following

\NewDocumentCommand\foo{om}{I grabbed `#1' and `#2'}

\NewDocumentCommand\baz{o}{#1-#1}

using the command as

\foo[\baz[stuff]]{more stuff}

will print

I grabbed `stu�-stu�' and `more stu�'

This is particularly useful when placing a command with an optional argument
inside the optional argument of a second command.

When an optional argument is followed by a mandatory argument with the same
delimiter, the parser issues a warning because the optional argument could not
be omitted by the user, thus becoming in e�ect mandatory. This can apply
to o, d, O, D, s, t, e, and E type arguments followed by r or R-type required
arguments.

The default for O, D and E arguments can be the result of grabbing another
argument. Thus for example

\NewDocumentCommand\foo{O{#2} m}

would use the mandatory argument as the default for the leading optional one.

2.6 Spacing and optional arguments

TEX will �nd the �rst argument after a function name irrespective of any in-
tervening spaces. This is true for both mandatory and optional arguments. So
\foo[arg] and \foo [arg] are equivalent. Spaces are also ignored when col-
lecting arguments up to the last mandatory argument to be collected (as it must
exist). So after

5

\NewDocumentCommand\foo{m o m}{ ... }

the user input \foo{arg1}[arg2]{arg3} and \foo{arg1} [arg2] {arg3} will
both be parsed in the same way.

The behavior of optional arguments after any mandatory arguments is se-
lectable. The standard settings will allow spaces here, and thus with

\NewDocumentCommand\foobar{m o}{ ... }

both \foobar{arg1}[arg2] and \foobar{arg1} [arg2] will �nd an optional
argument. This can be changed by giving the modi�ed ! in the argument
speci�cation:

\NewDocumentCommand\foobar{m !o}{ ... }

where \foobar{arg1} [arg2] will not �nd an optional argument.

There is one subtly here due to the di�erence in handling by TEX of `control
symbols', where the command name is made up of a single character, such as
`\\'. Spaces are not ignored by TEX here, and thus it is possible to require an
optional argument directly follow such a command. The most common example
is the use of \\ in amsmath environments, which in the terms here would be
de�ned as

\NewDocumentCommand\\{!s !o}{ ... }

2.7 `Embellishments'

The E-type argument allows one default value per test token. This is achieved
by giving a list of defaults for each entry in the list, for example:

E{^_}{{UP}{DOWN}}

If the list of default values is shorter than the list of test tokens, the special
-NoValue- marker will be returned (as for the e-type argument). Thus for
example

E{^_}{{UP}}

has default UP for the ^ test character, but will return the -NoValue- marker as
a default for _. This allows mixing of explicit defaults with testing for missing
values.

6

2.8 Testing special values

Optional arguments make use of dedicated variables to return information about
the nature of the argument received.

\IfNoValueTF {〈arg〉} {〈true code〉} {〈false code〉}
\IfNoValueT {〈arg〉} {〈true code〉} {〈false code〉}
\IfNoValueF {〈arg〉} {〈true code〉} {〈false code〉}

The \IfNoValue(TF) tests are used to check if 〈argument〉 (#1, #2, etc.) is the
special -NoValue- marker For example

\NewDocumentCommand\foo{o m}

{%

\IfNoValueTF {#1}%

{\DoSomethingJustWithMandatoryArgument{#2}}%

{\DoSomethingWithBothArguments{#1}{#2}}%

}

will use a di�erent internal function if the optional argument is given than if it
is not present.

Note that three tests are available, depending on which outcome branches are
required: \IfNoValueTF, \IfNoValueT and \IfNoValueF.

As the \IfNoValue(TF) tests are expandable, it is possible to test these values
later, for example at the point of typesetting or in an expansion context.

It is important to note that -NoValue- is constructed such that it will not match
the simple text input -NoValue-, i.e. that

\IfNoValueTF{-NoValue-}

will be logically false. When two optional arguments follow each other (a syn-
tax we typically discourage), it can make sense to allow users of the command to
specify only the second argument by providing an empty �rst argument. Rather
than testing separately for emptiness and for -NoValue- it is then best to use
the argument type O with an empty default value, and simply test for empti-
ness using the expl3 conditional \tl_if_blank:nTF or its etoolbox analogue
\ifblank.

\IfValueTF {〈arg〉} {〈true code〉} {〈false code〉}
\IfValueT {〈arg〉} {〈true code〉} {〈false code〉}
\IfValueF {〈arg〉} {〈true code〉} {〈false code〉}

The reverse form of the \IfNoValue(TF) tests are also available as \IfValue(TF).
The context will determine which logical form makes the most sense for a given
code scenario.

7

\BooleanFalse

\BooleanTrue

The true and false �ags set when searching for an optional character (using
s or t〈char 〉) have names which are accessible outside of code blocks.

\IfBooleanTF {〈arg〉} {〈true code〉} {〈false code〉}
\IfBooleanT {〈arg〉} {〈true code〉} {〈false code〉}
\IfBooleanF {〈arg〉} {〈true code〉} {〈false code〉}

Used to test if 〈argument〉 (#1, #2, etc.) is \BooleanTrue or \BooleanFalse.
For example

\NewDocumentCommand\foo{sm}

{%

\IfBooleanTF {#1}%

{\DoSomethingWithStar{#2}}%

{\DoSomethingWithoutStar{#2}}%

}

checks for a star as the �rst argument, then chooses the action to take based on
this information.

2.9 Argument processors

Argument processor are applied to an argument after it has been grabbed by
the underlying system but before it is passed to 〈code〉. An argument processor
can therefore be used to regularize input at an early stage, allowing the internal
functions to be completely independent of input form. Processors are applied to
user input and to default values for optional arguments, but not to the special
-NoValue- marker.

Each argument processor is speci�ed by the syntax >{〈processor〉} in the argu-
ment speci�cation. Processors are applied from right to left, so that

>{\ProcessorB} >{\ProcessorA} m

would apply \ProcessorA followed by \ProcessorB to the tokens grabbed by
the m argument.

\SplitArgument {〈number〉} {〈token(s)〉}

This processor splits the argument given at each occurrence of the 〈tokens〉 up
to a maximum of 〈number〉 tokens (thus dividing the input into 〈number〉 + 1
parts). An error is given if too many 〈tokens〉 are present in the input. The
processed input is placed inside 〈number〉 + 1 sets of braces for further use. If
there are fewer than {〈number〉} of {〈tokens〉} in the argument then -NoValue-

markers are added at the end of the processed argument.

8

\NewDocumentCommand \foo {>{\SplitArgument{2}{;}} m}

{\InternalFunctionOfThreeArguments#1}

If only a single character 〈token〉 is used for the split, any category code 13
(active) character matching the 〈token〉 will be replaced before the split takes
place. Spaces are trimmed at each end of each item parsed.

\SplitList {〈token(s)〉}

This processor splits the argument given at each occurrence of the 〈token(s)〉
where the number of items is not �xed. Each item is then wrapped in braces
within #1. The result is that the processed argument can be further processed
using a mapping function (see below).

\NewDocumentCommand \foo {>{\SplitList{;}} m}

{\MappingFunction#1}

If only a single character 〈token〉 is used for the split, any category code 13
(active) character matching the 〈token〉 will be replaced before the split takes
place. Spaces are trimmed at each end of each item parsed.

\ProcessList {〈list〉} {〈function〉}

To support \SplitList, the function \ProcessList is available to apply a
〈function〉 to every entry in a 〈list〉. The 〈function〉 should absorb one argument:
the list entry. For example

\NewDocumentCommand \foo {>{\SplitList{;}} m}

{\ProcessList{#1}{\SomeDocumentCommand}}

\ReverseBoolean

This processor reverses the logic of \BooleanTrue and \BooleanFalse, so that
the example from earlier would become

\NewDocumentCommand\foo{>{\ReverseBoolean} s m}

{%

\IfBooleanTF#1%

{\DoSomethingWithoutStar{#2}}%

{\DoSomethingWithStar{#2}}%

}

\TrimSpaces

Removes any leading and trailing spaces (tokens with character code 32 and
category code 10) for the ends of the argument. Thus for example declaring a
function

\NewDocumentCommand\foo {>{\TrimSpaces} m}

{\showtokens{#1}}

9

and using it in a document as

\foo{ hello world }

will show `hello world' at the terminal, with the space at each end removed.
\TrimSpaces will remove multiple spaces from the ends of the input in cases
where these have been included such that the standard TEX conversion of mul-
tiple spaces to a single space does not apply.

2.10 Body of an environment

While environments \begin{〈environment〉} . . . \end{〈environment〉} are typ-
ically used in cases where the code implementing the 〈environment〉 does not
need to access the contents of the environment (its `body'), it is sometimes
useful to have the body as a standard argument.

This is achieved by ending the argument speci�cation with b, which is a dedi-
cated argument type for this situation. For instance

\NewDocumentEnvironment{twice} {O{\ttfamily} +b}

{#2#1#2} {}

\begin{twice}[\itshape]

Hello world!

\end{twice}

typesets `Hello world!Hello world!'.

The pre�x + is used to allow multiple paragraphs in the environment's body.
Argument processors can also be applied to b arguments. By default, spaces
are trimmed at both ends of the body: in the example there would otherwise be
spaces coming from the ends the lines after [\itshape] and world!. Putting
the pre�x ! before b suppresses space-trimming.

When b is used in the argument speci�cation, the last argument of the environ-
ment declaration (e.g., \NewDocumentEnvironment), which consists of an 〈end
code〉 to insert at \end{〈environment〉}, is redundant since one can simply put
that code at the end of the 〈start code〉. Nevertheless this (empty) 〈end code〉
must be provided.

Environments that use this feature can be nested.

2.11 Fully-expandable document commands

Document commands created using \NewDocumentCommand, etc., are normally
created so that they do not expand unexpectedly. This is done using engine fea-
tures, so is more powerful than LATEX2ε's \protect mechanism. There are very
rare occasion when it may be useful to create functions using a expansion-only
grabber. This imposes a number of restrictions on the nature of the arguments

10

accepted by a function, and the code it implements. This facility should only
be used when absolutely necessary.

\NewExpandableDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\RenewExpandableDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\ProvideExpandableDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}
\DeclareExpandableDocumentCommand {〈cmd〉} {〈arg spec〉} {〈code〉}

This family of commands is used to create a document-level 〈function〉, which
will grab its arguments in a fully-expandable manner. The argument speci�ca-
tion for the function is given by 〈arg spec〉, and the function will execute 〈code〉.
In general, 〈code〉 will also be fully expandable, although it is possible that this
will not be the case (for example, a function for use in a table might expand so
that \omit is the �rst non-expandable non-space token).

Parsing arguments by pure expansion imposes a number of restrictions on both
the type of arguments that can be read and the error checking available:

� The last argument (if any are present) must be one of the mandatory types
m, r or R.

� The `verbatim' argument type v is not available.

� Argument processors (using >) are not available.

� It is not possible to di�erentiate between, for example \foo[and \foo{[}:
in both cases the [will be interpreted as the start of an optional argument.
As a result, checking for optional arguments is less robust than in the
standard version.

2.12 Details about argument delimiters

In normal (non-expandable) commands, the delimited types look for the initial
delimiter by peeking ahead (using expl3's \peek_... functions) looking for the
delimiter token. The token has to have the same meaning and `shape' of the to-
ken de�ned as delimiter. There are three possible cases of delimiters: character
tokens, control sequence tokens, and active character tokens. For all practi-
cal purposes of this description, active character tokens will behave exactly as
control sequence tokens.

2.12.1 Character tokens

A character token is characterized by its character code, and its meaning is the
category code (\catcode). When a command is de�ned, the meaning of the
character token is �xed into the de�nition of the command and cannot change.
A command will correctly see an argument delimiter if the open delimiter has
the same character and category codes as at the time of the de�nition. For
example in:

\NewDocumentCommand { \foobar } { D<>{default} } {(#1)}

11

\foobar <hello> \par

\char_set_catcode_letter:N <

\foobar <hello>

the output would be:

(hello)

(default)<hello>

as the open-delimiter < changed in meaning between the two calls to \foobar,
so the second one doesn't see the < as a valid delimiter. Commands assume
that if a valid open-delimiter was found, a matching close-delimiter will also
be there. If it is not (either by being omitted or by changing in meaning), a
low-level TEX error is raised and the command call is aborted.

2.12.2 Control sequence tokens

A control sequence (or control character) token is characterized by is its name,
and its meaning is its de�nition. A token cannot have two di�erent meanings at
the same time. When a control sequence is de�ned as delimiter in a command,
it will be detected as delimiter whenever the control sequence name is found in
the document regardless of its current de�nition. For example in:

\cs_set:Npn \x { abc }

\NewDocumentCommand { \foobar } { D\x\y{default} } {(#1)}

\foobar \x hello\y \par

\cs_set:Npn \x { def }

\foobar \x hello\y

the output would be:

(hello)

(hello)

with both calls to the command seeing the delimiter \x.

2.13 Creating new argument processors

\ProcessedArgument

Argument processors allow manipulation of a grabbed argument before it is
passed to the underlying code. New processor implementations may be created
as functions which take one trailing argument, and which leave their result in
the \ProcessedArgument variable. For example, \ReverseBoolean is de�ned
as

12

\ExplSyntaxOn

\cs_new_protected:Npn \ReverseBoolean #1

{

\bool_if:NTF #1

{ \tl_set:Nn \ProcessedArgument { \c_false_bool } }

{ \tl_set:Nn \ProcessedArgument { \c_true_bool } }

}

\ExplSyntaxOff

[As an aside: the code is written in expl3, so we don't have to worry about
spaces creeping into the de�nition.]

2.14 Access to the argument speci�cation

The argument speci�cations for document commands and environments are
available for examination and use.

\GetDocumentCommandArgSpec {〈function〉}
\GetDocumentEnvironmentArgSpec {〈environment〉}

These functions transfer the current argument speci�cation for the requested
〈function〉 or 〈environment〉 into the token list variable \ArgumentSpecification.
If the 〈function〉 or 〈environment〉 has no known argument speci�cation then
an error is issued. The assignment to \ArgumentSpecification is local to the
current TEX group.

\ShowDocumentCommandArgSpec {〈function〉}
\ShowDocumentEnvironmentArgSpec {〈environment〉}

These functions show the current argument speci�cation for the requested
〈function〉 or 〈environment〉 at the terminal. If the 〈function〉 or 〈environment〉
has no known argument speci�cation then an error is issued.

13

	Contents
	1 Introduction
	2 Creating document commands and environments
	2.1 Overview
	2.2 Describing argument types
	2.3 Modifying argument descriptions
	2.4 Creating document commands and environments
	2.5 Optional arguments
	2.6 Spacing and optional arguments
	2.7 `Embellishments'
	2.8 Testing special values
	2.9 Argument processors
	2.10 Body of an environment
	2.11 Fully-expandable document commands
	2.12 Details about argument delimiters
	2.13 Creating new argument processors
	2.14 Access to the argument specification

